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Abstract

We identify two different modes of interaction for planar shocks
accelerating heavy prolate gaseous ellipses. These modes arise from
different interactions of the incident and transmitted shocks on the
leeward side of the ellipse. The principal parameters governing the
interaction are the Mach number of the shock (M), the ratio of the
density of the ellipse to the ambient gas density, (9,7 > 1), Y0,
(the ratios of specific heats of the two gases), A (the aspect ratio). A
time ratio t7/t; (M, n, A, Y0, ), which characterizes the mode of inter-
action, is derived. The two modes yield different mechanisms of the
baroclinic vorticity generation. We model the net baroclinic circula-
tion generated on the interface by both the incident and transmitted
shocks and validate the model via numerical simulations of the Euler
equations. In the range 1.2 < M <3.5,1.54 <7 <5.04 and A = 1.5
and 3.0, our model predicts the baroclinic circulation to within 10 %
of the simulation results.
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1 Introduction

Recently, there has been an active interest in the field of shock interactions
with density-stratified interfaces. Such studies [1] are motivated by a desire
to understand turbulent mixing in SCRAMJETS, Inertial Confinement Fu-
sion as well as astrophysical phenomena related to supernovae. Furthermore,
the shock interactions with a density—stratified interface may be considered
a canonical problem in compressible hydrodynamics [2].

In this paper, we focus on the interaction of a planar shock accelerating a
prolate, heavy (i. e., heavier than ambient) gas ellipse. The physical picture
is that of a shock (also called the incident shock) of Mach number M, prop-
agating in an infinite gaseous medium of density py, pressure py, and ratio
of specific heats vy, and striking a prolate heavy gas ellipse of aspect ratio
A and minor axis 2b, density p,, pressure p,, and ratio of specific heats ;.
In this investigation, we use adjective “prolate” (resp. “oblate”) to qualify
an ellipse whose minor (resp. major) axis is parallel to the normal to the
incident shock front. The gases used in this investigation and their proper-
ties are shown in Table 1. Fig. 1 depicts a schematic of the setup. Due to
symmetry, only the top half is shown.

The incident shock (IS), on striking the interface between the elliptical
bubble and the ambient gas, refracts into a transmitted shock (TS) and
a reflected wave. Two generic classes of interactions exist: one where the
IS moves faster than the TS (fast-slow or f/s) and vice versa (slow-fast or
s/f). For the parameters considered in this paper, f/s (s/f) interactions are
observed when 7 = py/py > 1 (9 < 1). The reflected wave is usually a shock
for a f/s interaction and a rarefaction for s/f. If the IS, TS and the reflected
wave meet at a node on the interface, the refraction is called regular.

As the incident shock traverses the elliptical interface, it generates a layer
of vorticity baroclinically. We identify two different modes of baroclinic gen-
eration of circulation. These mechanisms are associated with shock compe-
tition on the leeward side of the bubble. The circulation deposited is pro-
portional to the strength of the two counter—rotating dipolar vortices which
emerge from the interaction at late time (by which we mean time exceeding
at least ten ellipse passage times by the incident shock). These have been
observed in simulations and experiments of shock interactions with circular
cylinders, and their evolution may be explained simply in terms of incom-
pressible vortex dynamics. Thus our explicit goal is to derive a reduced model



to quantify the baroclinic circulation on the interface.

Investigations of shock—accelerated circular cylinders were done experi-
mentally by Haas and Sturtevant (M < 1.3) [3] and Jacobs (M < 1.15) [4],
and numerically by Quirk and Karni (M = 1.22, radius resolved by 450 grid
cells) [5] and McKee et al. (M = 10, radius resolved by 240 grid cells) [6].
Three—dimensional numerical simulations of shock—ellipsoid interactions were
done by Xu and Stone (M = 10, major axis resolved by 128 grid cells) [7].
The evolution of interfaces containing baroclinic vorticity has been studied
and quantified by Hawley and Zabusky [8] and Yang et al. [9]. A starting
point in the development of our model is the model for circulation deposition
on heavy circular cylinders by Samtaney and Zabusky [10] and baroclinic
circulation quantifications for s/f interfaces by Samtaney et al. [11].

2 Numerical Simulations

2.1 Governing Equations

We first present results from numerical simulations to demonstrate the shock—
competition mentioned above. Since viscous effects are expected to be neg-
ligible during the vorticity deposition phase of the shock—ellipse interaction,
we adopt an inviscid model for simulation purposes. We make the follow-
ing assumptions: the flow is inviscid, the gases are perfect, and there are
no chemical reactions between the two gases, which are further assumed to
be in thermal equilibrium. The governing equations (the compressible Euler
equations) in conservative form are

U, +FU), + Q(U)y =0, (1)
where
U = {p,pu,pv, E,pC}",

= {pu, pu® + p, puv, (E + p)u, pCu}’,
= {pv, puv, pv* + p, (E + p)v, p(v}”,

and F is the total energy, related to the pressure p by p = (y—1)(E—Lp(u?+

v?)). ’



In the above equations, the field quantity ((x,t), defined as the volume
fraction of the incident gas, is used to track of the interface between the
incident and transmitted gases. ((x,t) € [0, 1] and the level set ((x,t) = 0.5
is chosen to define the interface.

2.2 Initial and Boundary Conditions

The boundary conditions are post-incident shock values at the left boundary
and quiescent flow (py, pp, 1 = 0) at the right boundary. Reflecting boundary
conditions (u-n = 0, where n is the unit normal to the plane of the boundary)
were enforced on the horizontal axis (axis of symmetry) and outflow boundary
conditions were enforced on the top boundary. The ellipse is centered at
the origin of the coordinate system, and only the top half of the ellipse is
simulated. The initial condition for ( is given by ((x,0) = 1(0) in the incident
(transmitted) gas. A shock moving in the positive x-direction is initialized
using the Rankine-Hugoniot jump conditions. The shock was initialized at
Xo = 10Azx left of the interface which is initially smeared over 2Az to 3Ax .

2.3 Numerical Detalils

Our numerical method is a second-order accurate Godunov scheme and in-
cludes interface tracking. A complete exposition of the numerical method
can be found in our previous paper [11]. The Godunov method gave rise to
transverse oscillations behind the transmitted shock at high Mach numbers
(M > 2.75) and high stratifications (n > 5), and consequently a second—order
Equilibrium Flux Method (EFM) [12] was used for them.

It should be noted that no explicit artificial viscosity was used in these
numerical methods. However these numerical methods do suffer from an
implicit numerical viscosity which causes a local mixing of the incident and
transmitted gases. The ratio of specific heats in a computational cell con-
taining a mixture of the gases is calculated as

_ 70 + (1 = )Ry
(Ry+(1=0)Ry

(2)

where R, and R, are gas constants of the incident and transmitted gas,
respectively.



A uniform mesh is used for all the simulations. The simulation codes were
validated in our previous studies [11, 13]. In Fig. 2 we establish convergence
with respect to grid refinement for interfacial circulation deposition (I'pyum,
[11]) on an ellipse. We plot the circulation for the parameter set M = 1.5,n =
3.0,A =1.5,v = 14,7, = 1.172, normalized by Mcyb, as a function of time.
We observe convergence for the interfacial circulation when the major axis of
the ellipse was resolved by 180, 360, and 720 grid points. For the runs in this
paper, the major axis will be resolved by 360 grid cells except where noted.

2.4 Normalization

For simplicity, we assume p, = pg = po = 1 and p, = n. All length scales are
normalized by b (equivalent to specifying b = 1), velocities by ¢y, the speed
of sound in the ambient medium (equivalent to specifying ¢y = 1), and time
by t* = b/cy, the half-bubble traversal time by a sound wave.

3 Shock—Competition

In this section, we first distinguish between two modes of interaction which
arise on the leeward side of the ellipse. A time ratio is then derived which
characterizes the mode of the interaction.

3.1 Classification

Here we describe the two modes on interaction. These modes are named a
“Type I” and a “Type II” interaction. Fig. 3 shows a Type [ interaction. The
results are from an M = 1.2,n = 5.04, A = 1.5 (Air-SF6) simulation. Density
contours have been plotted over the normalized vorticity field (w/wmaz, Where
Wmaz = maz(|lw|)) to juxtapose the shocks and the vorticity. The contour
level ¢ = 0.5 denotes the center of the interfacial layer and is seen as the
dark line in Fig. 3. Fig. 3(a) shows the transmitted shock (TS) approaching
a local s/f interaction with the leeward side, while the incident shock (IS) has
nearly completed its traversal. Fig. 3(b) shows an s/f interaction between
TS and the post-shocked ambient gas on the leeward side of the ellipse in
progress while the IS reflects off the horizontal axis, depositing opposite—
signed vorticity. Thus the TS completes its traversal of the ellipse after the



IS. Tt is clear that there is circulation deposition first by the IS followed by
circulation deposition by the TS. The windward edge of the ellipse shows a
“staircase” effect due to discretization of the density interface. It plays no
role in our discussion because it contains very little vorticity. Note that the
incident shock compresses the ellipse, and therefore, the length of the minor
axis is smaller than 2. Furthermore, the shock imparts a mean velocity to the
ellipse along the x-axis. Due to this the ellipse does not appeared centered
at the origin in Fig. 3.

Fig. 4 shows density contours, the mean interface location (¢ = 0.5 con-
tour), and the normalized vorticity field at three different times for a Type I1
interaction with M = 2.75,7 = 3.0, and A = 3.0 (Air-R22). The TS traverses
the ellipse before the IS and interacts with it on the leeward side. There is
circulation deposition by the IS which is prematurely terminated and a s/f
deposition by the TS. In Fig 4(a) we see the incident shock (IS) traversing
around the leeward side depositing negative vorticity, while the transmitted
shock (TS) approaches the leeward interface. The nearly vertical “stalk” of
the TS is about to undergo a local s/f interaction. In Fig. 4(b), we observe
a complex shock system created by the TS-IS interaction. Vorticity genera-
tion on the interface by the IS is terminated, and the TS undergoes an s/f
interaction with the unshocked ambient gas on the leeward side. In Fig. 4(c),
TS has emerged from the bubble, and its interaction with the IS occurs off
the interface. A slip line, formed as a result of the TS-IS interaction, is seen
emanating from a triple point on TS. We also see the incipient rolling up of
the interface, as discussed in [14]. Note that, as in the previous interaction,
the ellipse gets compressed by the shock and translates along the x-axis.

From the above discussion, in essence we observe that the IS and the
TS compete on the leeward side of the ellipse. It is precisely this shock—
competition which determines the vorticity deposition mechanism.

Samtaney and Zabusky [10] identified three phases in the interaction of
shocks with circular cylinders. We observe a variation of the same in shock—
ellipse interactions. The traversal of the shock can be divided into the fol-
lowing phases :

e Phase (i) : In this phase, the shock undergoes regular refraction on the
windward side of the ellipse. This phase ends when «, the local angle
between the shock front and the ellipse, reaches a critical angle [10] at

C in Fig. 5.



e Phase (ii) : This phase ends when the shock reaches the top of the
ellipse (point B in Fig. 5), i. e., a = 7/2.

e Phase (iii) : This phase occurs on the leeward side of the ellipse (be-
tween B and D in Fig. 5). The incident shock traverses over the top
and bends back to meet the interface almost at o = 7/2 [10]. However,
if the incident shock is weak, it decomposes into a local region of com-
pression waves near the interface. The effects of shock competition, as
outlined above (secondary interactions involving T'S and the premature
termination of the IS traversal), are observed only in this phase of the
interaction.

The different phases of the interaction are summarized in Fig. 5. A and
D are the windward and leeward tips of the ellipse, respectively, while B
is the top. Point C' (= (—z.,¥.)) is the point where the shock refraction
becomes irregular. C' is the mirror image on the leeward side. Phase(i) of
the interaction occurs in AC, Phase(ii) in CB, and Phase(iii) in BC'D

3.2 Critical Time and Aspect Ratios

We now distinguish the shock—competition by means of the shock traversal
time. To model these interactions, we make a few simplifying approxima-
tions.

1. We approximate the “stalk” of the TS as a plane shock of height vy,
(=%, y.) being the point on the interface where the incident shock
refraction becomes irregular. In an irregular refraction at an elliptical
interface, the TS system consists of a nearly vertical “stalk”, topped
by a triple point and a complex shock system. By approximating the
TS as a plane shock of height y., we ignore the triple point and the
complicated shock system associated with it.

2. We assume that the height and strength of the TS remain unchanged
as it propagates through the inside of the ellipse.

3. On the leeward side of the ellipse, we adopt the near-normality ansatz
[10], i. e., the IS is locally perpendicular to the interface.



We estimate the time taken by the IS to traverse the prolate elliptical inter-

face by
1 B D
t = M[/A dm—i—/B dl]

- % l1 FAE (@)] (3)

where dl is the infinitesimal arc length along the interface, and the points A,
B and D have been defined in Fig. 5. Note that £(k) is a complete elliptic
integral of the second kind. The time taken by the T'S to traverse the interior
of the ellipse is estimated by

2
= 4

tr

where ¢ is the speed of sound in the unshocked ellipse normalized by ¢y, M7 is
the Mach number of the transmitted shock. Note that M7 is calculated from
a one dimensional f/s shock interaction (consult reference [10] for details).

The ratio
tT _ M Yo 2\/_

tr _ M % 7
tr - Mr\ %14 a8(,/(0% = 1)/A)

determines the type of interaction. Since in a Type II interaction, the trans-
mitted shock (TS) completes its traversal before the incident shock, it is
characterized by tr/t; < 1. Type I interactions have t7/t; > 1. We also
estimate the time taken by the TS to start an s/f interaction on the leeward
side (alternatively, to terminate the primary circulation deposition by the IS)
as

(5)

14+ 2,
= ) 6
Vg, (6)
If 4o and ~, are fixed, then the 3-tuple (£, n, A) defines the parameter set

for a given shock—ellipse interaction, where £ is the normalized pressure ratio
across the incident shock, given by

te

S - 1)
_ +1
M) =1 l (M2 —1)




so that £(M) — 0(1) for weak (strong) shocks. Keeping (£, n) fixed, as A is
varied, for aspect ratios less than a critical aspect ratio (A < \.), we observe
a Type I interaction, while for A > \., we observe a Type II interaction. For
A = A, we have tr/t; = 1. Note that Eq. 3 is valid only for prolate (A > 1)
ellipses. Since it is possible that A\, < 1 for certain (£,n) combinations, Eq. 3
was reworked for oblate ellipses to give

= 1+ EWT— 2. (

~J
SN—r

tr/t; (Eq. 5) changes accordingly. In Fig. 6(a), we plot the surface A\ =
Ae(€,m) as a function of € and 1/7 fixing the specfic heat ratios (yo = 75 =
1.4). The A, surface in (£, 7, A) space forms the boundary between Type I
& II interactions. In Fig. 6(b) we show projected A. contours in the (£, 7)
space. We observe that in the (£,7) space there is a region where A, < 1.
This implies that if only prolate ellipses are considered (A > 1) then in this
region one can only observe Type II interactions.

4 Quantification and Modeling of Baroclinic
Circulation

Samtaney et al.( [10], [11]) showed that the baroclinic circulation generation
per unit length of a density—stratified interface (accurate to first order), nor-
malized by cg, is given by &1 = 0;(M,n,7%,7) sina, where « is the local
angle between the shock front and the interface and i denotes s/f or f/s.
Equations for o;(M,n, v, V), for both s/f and f/s interactions, are given in
Appendix A for completeness. We assume (a) the incident shock strength M
remains constant and (b) the incident shock is locally perpendicular to the
interface on the leeward side of the bubble. Under these assumptions, in the
absence of shock competition, the vorticity deposition on a heavy ellipse is
given by

B . D .
Liis = oaps(M,n,%0,7) [/A s1n(a)dl+/B s1n(7r/2)dl]

a2

= O-f/s(Manaf)/Oaf)/b) ll+/\5< \

10



Points A, B, and D are defined in Fig. 5.
Type I interactions (characterized by t7/t; > 1) contain a primary f/s
deposition by the IS and a secondary deposition by the TS. Thus

D

Lr = Dyt oi(Mr,1/1 70 %) [ sin(@)d

= Ty +oi(Mp, 1/1', v, %) (1 — 2.), 9)

where n' = py/phy, Py is the post-shocked density of the ambient gas, approx-
imated from a 1D shock—interface interaction. Subscript i’ in equation 9 is
either f/s or s/f depending upon 7.

It can be shown that in the absence of shock—competition (i. e., during
the primary deposition), the time rate of baroclinic circulation deposition, up
to first order, is a constant. Note that the circulation deposition in a Type
IT interaction contains two terms. The first term is due to the (prematurely
terminated) deposition by the IS (approximated by I'y/st./t;), and the second
term is the due to the s/f interaction of the TS at an interface of density ratio
1/n. Therefore, the total circulation deposition in a Type II interaction is
given by

te
L= Ff/st_ + 05/ (Mr, 1/1, %, %) (1 — zc)- (10)
I

We quantify the interfacial circulation from the numerical simulations
(Cpum, [10]) at the end of the TS traversal of the interior of the ellipse and
plot I'yym /Ty for n = 3.0, A = 1.5 (Air-R22) and n = 5.04, A = 1.5 (Air-SF6)
simulations in Fig. 7. In Fig. 8 we plot [y, /7 for 1.2 < M < 3.5 for
n = 1.54, A = 1.5 (Air-CO2) and n = 3.0, A = 3.0(Air-R22). The difference
in cirulation deposition in numerical simulations, and the model is less than
10 % for both types of interactions.

5 Conclusion

In summary, shock—ellipse interactions are characterized by leeward-side
shock competition. A time ratio (of the ellipse traversal times of the incident
and transmitted shocks) governs the competition and is used to demarcate
the two types of interactions observed. For a given shock strength and gas
pair, there exists a critical aspect ratio of the elliptical cylinder for which
the time ratio is unity. We show that for a certain region of the parameter

11



space, prolate ellipses can experience only one type of interaction. A simple
model for the baroclinic circulation deposition during the interaction (which
incorporates the effect of shock competition) has been proposed which agrees
with results from numerical simulations to within 10 %.
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A Calculation of the circulation model terms

In this appendix, we provide, without details, sufficient information to cal-
culate the terms (o,/; and oy/,) in the model derived in section IV.

The baroclinic circulation generation per unit length of a fast—slow inter-
face can be expressed as a series in sin o, where « is the local angle between
the shock front and the interface. The coefficient of the first order term is
a¢7s(M,n,7%,7s), and is given by[10]

=

_ % (11— t(pao, 1) 1
Offs = f <% T e/ =1 1- 1/J(p2o/P1aM0)¢(p1aM0))> :

(11)
In the above equation p; is the pressure behind the incident shock (of Mach
number M) and is given by

1(M2 —1). (12)

Furthermore, pyg is the pressure behind the reflected shock for a« — 0 and
may be calculated by solving the following nonlinear algebraic equation,

1
1 -1 +1)?
(pl’ ,U’O) p— fr] ; p20 1 (’}/() ) = 0(13)

pp—1 P2o/p1 — 1 ”
1
(U + pao/1)? (42 + pap)?

(g + 1)

=

D=

12



The function (&, ) = fllj;—’fg, and p? = zl—ji
Likewise, for a slow-fast interface, one may express the baroclinic circu-
lation generation as a series in sin . The coeflicient of the first term in the

series is o,/ (M, 1,70, 7) and is given by [11]

70—1

1 1 — ¥ (poo, P20\
Os/f = 1 i 1 (a0, 1) -~ 1 1-— <ﬂ) ¥(p1, o)
YeM \ 16T Y Yo — b1

(14)
In the above equation, pog is the pressure behind the transmitted shock for
a — 0 and is calculated by solving the following nonlinear algebraic equation

Y0—1

27,
(pla,U'O) 1—<@> ' =

Y4l

1+p2)2 p—1 2
( 0) 21 l_{_ w
Yoo (ug+p): Y-l

D=

1+ M%)% P2 — 1
1 1
Yo (mv0/76)2 (115 4 P20)?

(15)
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Table 1: Gas pairs.

Gas Gas Pairs
Property | Air-CO2 | Air-R22 Air-SF6
n 1.54 3.00 5.04
Yo, | 1.4,1.297 | 1.4, 1.172 | 1.4, 1.0935

Outflow boundary condition:

Py Py IS
p p
! 0 B
E } Outflow
Inflow
< dlipse
X

Figure 1: Schematic of the physical setup. Due to symmetry, only the top

Reflectina boundarv condition

half is shown.
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Convergence of I with respect to mesh refinement
0

Mm/Mc,b

=)
»
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Figure 2: Convergence study of baroclinic circulation (T'y,,,) deposition on
the ellipse by the shock. The circulation, normalized by Mcyb, is plotted as
a function of time. The parameters of the run are M = 1.5,7 = 3.0, \ =
1.5,v = 1.4,~, = 1.172. The major axis of the ellipse was resolved by 180
(dotted line with O), 360 (solid line) and 720 (o) grid points.
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Figure 3: A Type I interaction at an Air-SF6 interface (M = 1.2, A = 1.5). 16
density (p) contours (equally spaced between 1.8 and 12.1) have been overlaid
on a normalized vorticity (w/wmaz Where wpmee = max(|w|) ) field. The
interface ¢ = 0.5 is plotted using a solid line. In (a) we see the transmitted
shock (TS) just before it undergoes a local s/f interaction with the leeward
side of the interface while the incident shock traverses it. In (b) we see that
the IS has reflected off the horizontal axis while TS undergoes a local s/f
interaction with the leeward side of the ellipse. The density profile shows
the strength of the shock after diffraction. wy,e.b/Mcy = 8.62, circulation
deposition (numerical) at the end of the TS traversal: T'y.,/Mcob = 0.863.
The simulation domain was [—4.27 : 4.27] x [0 : 2667].
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Figure 4: A Type II interaction at an Air-R22 interface (M = 2.75, A = 3.0).
9 density (p) contours (equally spaced between 3 and 19) have been overlaid
on a normalized vorticity (w/wmez Where wpee = max(|w|) ) field. The in-
terface ¢ = 0.5 is plotted using a solid line. In (a) we see the transmitted
shock (TS) just before it interacts with the incident shock (IS). In (b) the
interaction is under way. In (¢) we see that the transmitted shock has tra-
versed through the ellipse before the incident shock. We also see a slip line
emanating from a triple point on the TS, formed as a result of the TS-IS
interaction on the leeward side. wye.b/Mcy = 24.19, circulation deposition
(numerical) at the end of the TS traversal: I',yum,/Mcob = 1.12. For this
simulation, the major axis was resolved by 720 grid points, the simulation
domain was [—2.133 : 2.133] x [0 : 5.333].
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Phase(ii)

Irregular refraction

Shock
—_— [ TAT Phase(iii)

Phase (i) Near-normality ansatz

Regular refraction

A >X

Figure 5: The different phases in a shock-ellipse interaction. A and D are
the windward and leeward tips of the ellipse, respectively, while B is the top.
Point C' (= (—x,y.)) is the point where the shock refraction becomes irreg-
ular. C" is the mirror image on the leeward side. Phase(i) of the interaction
occurs in AC, Phase(ii) in CB, and Phase(iii) in BC'D. Phase(i) is charac-
terized by regular shock refraction and Phase(ii) by irregular refraction. The
near-normality ansatz is employed in Phase(iii). Shock competition takes
place in the section of the ellipse between C’ and D.
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Figure 6: Critical aspect ratio (\., Eq. 5 with t7/t; = 1) as a function
of 1/n and &, the normalized pressure gradient across the incident shock.
Yo = v = 1.4. In (a) we plot the surface A = A\.(£,n) to demarcate between
Type I and Type II interaction spaces. For a Type I interaction A\ < A.(&,7n)
(below the surface) and for a Type II interaction A > A.(&,n) (above the
surface). In (b) we project the A, surface to 2D. 10 exponentially spaced
contours between 0.2 and 4.8 have been plotted. The arrows indicate the type
of interactions experienced by prolate ellipses on either side of the A\, = 1.0
contour.
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Figure 7: Tyum /T (Eq. 9) for 1.2 < M < 3.5 for Type I interactions. Results
have been plotted for n = 3.0, A\ = 1.5 (Air-R22, o) and n = 5.04,\ = 1.5
M is limited to 3.0 in the Air-R22 case since for M > 3.0,
for a A = 1.5 ellipse, the interaction becomes Type II. Inset: ¢r/t; has been
plotted for all the cases to show the type of interaction.

(Air-SF6, o).
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Figure 8: Tyum/Trr (Eq. 10) for 1.2 < M < 3.5 for Type II interactions.
Results have been plotted for n = 1.54, A = 1.5 (Air-CO2, e) and n =
3.0, A = 3.0 (Air-R22, ¢). Inset: ty/t; has been plotted for all the cases to
show the type of interaction.
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